
THE ERECHTHEION AND THE LENGTH
OF THE ‘DORIC-PHEIDONIC’ FOOT*

Jari Pakkanen

Why is new research needed on the length of the Erechtheion foot-standard? All
scholars of the building unanimously agree that the temple was designed and exe-
cuted using a foot-standard with a length of 0.326–0.328 m, and the result can be
verified based on comparison of archaeological and inscriptional evidence. It is
this wealth of evidence from fifth-century Acropolis which makes further scruti-
ny of the issue worthwhile: the building and the related inscriptions have been
studied and published in detail, but a closer look at how the question of the foot-
unit has been dealt with in previous scholarship shows that quite little of this mate-
rial has actually been used in trying to answer the question. The method used in
this paper is very different from the standard approach to architectural metrology:
I find that deriving lengths of measurement-units or design principles from build-
ing dimensions is a far more complex task than is taken for granted in most earli-
er scholarship1, and I will argue here – using the Erechtheion as a case study – that
a proper statistical analysis should be an essential part of all metrological studies.

Inscriptions such as the report by the building commission on the state of the con-
struction work in 409/8 BC (IG I3.474) can direct towards studying certain ele-
ments and parts of the building, but in the end the analysis of the length of the
foot-unit must be based on measurements of the actual surviving building and
individual blocks. Even though in Greek metrology there is a tendency to see the

* I have briefly discussed the importance of the Erechtheion building block measure-
ments in Pakkanen 2002, 501–502. The analysis given here supersedes the one presented in
that paper and presents the more detailed study promised in Pakkanen 2006, 279, note 29. In
addition to my home institution, Royal Holloway at the University of London, the research
has been financially assisted by a grant from the Central Research Fund of the University.
Jim Coulton, Richard Tomlinson and Esko Tikkala have commented on an early version of
the manuscript. Needless to say, I am very grateful to all these individuals and institutions.

A table ronde on various methodological approaches is announced in the Talanta edito-
rial preface, supra 7.

1 For further criticism and evaluations of previous metrological studies on Greek archi-
tecture, see Pakkanen 2002; 2004a; 2004b; 2005.
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finished structure being directly linked with the design of the building, what is
actually being studied is the end-product which is several steps removed from the
original conception. This is one reason why it is necessary to try to take into
account as much of the data as possible. Using only a few dimensions to define
the employed foot-unit risks being unduly influenced by arbitrary factors: it is
quite conceivable that the sizes of the chosen building elements were not even
designed to be a precise multiple of the employed measurement-unit or that the
builders did not meticulously follow the design; possibility of modern measure-
ment errors and the condition of the monument have to also be taken into account.
Increasing the size of the data set reduces the likelihood of individual dimensions
invalidating the analysis.

Even if the size of the construction foot-standard can be derived from the build-
ing measurements, this does not necessarily solve the problematic relationship
between the design and the end-product. We can, however, be one step closer
towards solving the controversy between the employed foot-standards and archi-
tectural design: since the analysis of the unit makes no assumption about the ini-
tial design, it can be studied whether the defined foot-unit can be related to major
building dimensions in a meaningful way. Standard design analyses assume that
this is the case, but it has rarely been demonstrated in the context of fifth-centu-
ry Greek architecture.

Analysis of a larger data set than in previous studies necessitates the use of an
appropriate quantitative method: increasing the number of dimensions results in
more complexity and, therefore, it is impossible to recognise the emerging pat-
terns employing the traditional methods of metrology. In general, I think that the
question of the use and definition of measurement-units in Greek architecture is
far from being solved and that the whole procedure of deriving foot-unit lengths
from architectural dimensions is in need of further evaluation. The current lack of
consensus among scholars could indeed be a reflection of the fact that no widely
used foot-standards existed in the Greek world2, but it is also at least partially due
to the use of inappropriate methodology in trying to solve the question at hand:
besides being an archaeological problem, determining the length of Greek length-
units from building measurements is a statistical one, and studies which do not
use quantitative methods can easily reach incorrect conclusions3. Also, since ear-
lier scholarship on foot-units has often used procedures of questionable validity,
contemporary ‘understanding’ on the sizes of the measurement-standards should
not be taken as a starting point of any new research. Statistics can be used to over-

2 See e.g. Coulton 1974, 62; de Waele 1988, 205–206; 1990, 1; Cooper 1996, 131–132;
Wilson Jones 2000, 75.

3 Pakkanen 2004a; 2004b; 2005. In general, metrological analyses of Greek architecture
have not used quantitative methods to any great depth, though R. C. A. Rottländer’s work
should be mentioned here as an exception; see e.g. Rottländer 1996.
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come this problem: it is not necessary to make preliminary assumptions about
which hypothetical unit could have been employed.

Because of the wealth of information on the Erechtheion, it is unlikely that fur-
ther research would result in a radically different foot-unit: unlike with other
buildings, the list of the building block sizes given in IG I3.474 has since late nine-
teenth century acted as a reality check so that no unlikely results have been put
forward. The reason why I have nevertheless chosen to use the Erechtheion as a
case study is primarily a methodological one. Since the use of statistics in Greek
metrology is not currently regarded as essential, it is vital to put forward a test
case where the results of the analysis can be independently validated. This is the
only way to demonstrate how critical the use of proper methodology is in the
analysis of other buildings for which no cross checks are possible to carry out: in
most cases metrological analysis can solely be based on archaeological material.

I will in this paper employ two different computer-intensive statistical methods.
Bootstrap confidence intervals can be used in archaeological contexts to deter-
mine how precisely a certain length, such as a foot-unit, can be derived on the
basis of inscriptional and architectural data4. The second, more complex quanti-
tative method is based on D. G. Kendall’s cosine quantogram analysis for detect-
ing a quantum, or a basic dimension, of unknown length in a set of measurements;
after the first stage of analysis the result validity can be evaluated through com-
puter simulations5. Monte Carlo simulations can also be used to determine the
probable range of a statistically valid quantum (Kendall 1974, 259–260;
Pakkanen 2004a, 270).

I will first use cosine quantograms to analyse the dimensions of the building
blocks listed in the Erechtheion inscription. Since the number of identified blocks
is quite small, it is also necessary to study a larger set of measurements from the
temple: I have chosen to use the plan dimensions to further scrutinise the length
of the Erechtheion-foot, and at the same time some of the reasons behind the
shortcomings of previous metrological analyses can be brought forward.

Previous scholarship on the Erechtheion-foot
The idea that the Erechtheion foot-standard can be defined as ca. 0.326–0.328 m
was put forward by Wilhelm Dörpfeld in the late nineteenth century. He was the
first to perceive the potential of the Erechtheion block inventory in defining the
length of the fifth-century Athenian foot-unit: he compares the dimensions listed

4 On bootstrap methods in archaeology, see Pakkanen 1998, 53–55; Baxter 2003,
148–153.

5 Kendall 1974; for using the method in studies on Greek architecture, see Rottländer 1996;
Pakkanen 2002; 2004a; 2004b; 2005. Kendall’s method has been recently reviewed in Baxter
2003, 228–235.
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in the inscription with building block measurements, but ends up being disap-
pointed with the results as the correspondence between the dimensions and the
written testimony is not perfect. To solve the question, Dörpfeld turns to some
known buildings: he takes the interior width of the Erechtheion, the central nave
and column height of the Parthenon, the radius of the orchestra of the theatre of
Dionysos, the column height of the Propylaia and the interaxial distance of the
interior colonnade of the stoa of Eumenes. These all seem to have been executed
using a round number of feet and he proceeds to suggest that a measurement-stan-
dard of 0.326–0.328 m can therefore be recognised in Athenian architecture
(Dörpfeld 1890b, 168–71). Dörpfeld’s approach is understandable: he has a spe-
cific problem for which he needs a quick solution. What is not generally recog-
nised is that the method of data selection is clearly invalid: his choice of analysed
elements is dependent on them producing a good fit with a predetermined foot-
unit. There is no way of knowing that these specific parts of the buildings were
originally designed and executed as an exact multiple of the standard in question.
It is quite unfortunate that his approach has since become nearly universally
accepted in studies of Greek architecture and can now even be called ‘the stan-
dard metrological method’. Despite the shortcomings of the initial analysis,
Dörpfeld’s foot-unit has subsequently been regarded as one of the most widely
used standards in the Greek world, and it is most often called the ‘Doric’ or
‘Pheidonic’ foot6.

The American team responsible for the publication of the 1927 monograph on the
Erechtheion considered the question of the foot-unit already solved by Dörpfeld,
so they did not regard that any further reflection on the issue was necessary7.
William B. Dinsmoor’s original analysis of the length of the foot used on the
Acropolis is hardly more thorough than Dörpfeld’s: it is based on five
Erechtheion and five Propylaia dimensions8. Dinsmoor uses the height, length
and thickness of the wall block and the column diameter and interaxial spacing of
the North Porch to arrive at a foot length of 0.32600 m for the temple. The wall
block dimensions are reported by Dinsmoor as 0.489 m × 1.304 m × 0.652 m, and
his choice of these particular figures is quite interesting as they all produce a foot-
unit of precisely 0.326 m9. His dimensions can be compared with the first three

6 The most often quoted analysis of the ‘Doric’ foot is Dinsmoor 1961, 358–360, but he
suggested the use of the term already in Dinsmoor 1940, 20 note 40. Dörpfeld 1890b, 177 is
the first modern scholar to connect the name of legendary Argive king Pheidon with the foot-
unit; Herodotos 6.127 recounts that he introduced new measurement standards to Argos. For
recent scholarship on the foot-standard, see Wilson Jones 2000.

7 Stevens et al. 1927, 222–223, esp. note 3. They use a value of 0.328 m for the unit, even
though Dörpfeld was not this precise in his analysis.

8 Dinsmoor 1961, 358–359. The recent analysis in Dinsmoor/Dinsmoor (2004, 5–7,
447–449) is slightly more detailed, but it concentrates solely on the Propylaia.

9 0.489 m / 1.5’ = 0.3260 m; 1.304 m / 4’ = 0.3260 m; 0.652 m / 2’ = 0.3260 m; Dinsmoor
1961, 358.
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lines in Table 1: depending on which specific examples are analysed, it is also
possible to arrive at a little more variation of 0.325–0.327 m based on the wall
block sizes. His two dimensions of the North Porch give a length of 0.326–0.327
m for the unit10. Dinsmoor’s approach takes partially into account the inscription-
al evidence when he uses the wall block dimensions given in IG I3.474.11–12,
but no such justification can be given for the choice of the North Porch details.

Hansgeorg Bankel’s relatively recent analyses of the Erechtheion employ a
graphic method he calls the “metrological scale” (Bankel 1983, 67–70, 89–91;
Bankel 1991, 159–162). It uses seven dimensions of the North Porch in the graph-
ic analysis and nine in the table calculations, though the precise size of his foot-
unit 0.32674 m is derived from one single measurement, the stylobate width of
the porch11. Dörpfeld and Dinsmoor base their analysis of dimensions which can
be expressed in terms of full and half-feet, but Bankel assumes that it is justifi-
able to introduce dimensions as small as 1/32 of a foot or ca. 1 cm12. Bankel’s
investigation is more complex than the two cases discussed above: even though
his approach has been criticised by several scholars (Wesenberg 1984, 549–553;
Büsing 1985, 159–160; Pakkanen 2005), demonstrating why it fails to correctly
derive the foot-standard requires a more thorough examination of the plan dimen-
sions. I will, therefore, need to return to the matter later on.

Rolf C. A. Rottländer is not in general convinced of the existence of the ‘Doric-
Pheidonic’ foot in antiquity, so he tries to interpret the dimensions listed in the
Erechtheion inscription in terms of his ‘Drusian’ foot of 0.33317 m (Rottländer
1991). His foot-standard produces systematically greater lengths than the dimen-
sions measured on the building, so his argument can be considered rather more
tendentious than persuasive.

IG I3.474 and the length of the Erechtheion-foot
The importance of the Erechtheion construction work inventory for our knowl-
edge on the length of the foot-unit employed in fifth-century Athens and Attica

10 0.817 m / 2.5’ = 0.3268 m; 3.097 m / 9.5’ = 0.3260 m; Dinsmoor 1961, 358.
11 Bankel’s unit derivation is criticised in Büsing 1985, 159–160, though I do not agree that

a design analysis based on the “theoretical length” of the foot-unit produces necessarily any
more reliable picture of Greek architectural practices than Bankel’s method.

12 Bankel 1983, 67–70, 89–91; Bankel 1991, 159–162. This aspect of Bankel’s analysis is
evaluated by Burkhardt Wesenberg, and he shows that an ‘Attic’ foot of 0.29474 m can actual-
ly produce a slightly better fit with Bankel’s data set. Wesenberg also demonstrates that
employing half-dactyls in metrological analyses reduces the discrepancies between foot-units
and measured dimensions nearly meaningless; see Wesenberg 1984, 549–553. See also the
analysis of Fig. 4 below.

101



cannot be overemphasised13. The inscription gives a good indication which build-
ing dimensions form the most useful starting point for a study concentrating on
the relationship between architectural measurements and Greek foot-standards14,
and it also provides a way of checking the validity of the proposed statistical
method.

It is possible to match 21 dimensions listed in the inscription against actual meas-
urements taken on the building blocks (Table 1)15. An estimate for the length of
the Erechtheion-foot can be obtained by dividing the measured dimension by the
foot-value given in the inscription. The data of the inscription cannot be regard-
ed as entirely precise (column 4 in Table 1): the produced range for the length of
the foot-unit is rather wide at 0.285–0.342 m. There is, however, no need to give
up the analysis at this point, as Dörpfeld did (Dörpfeld 1890b, 168–171), but
rather to proceed to see if statistical analysis can provide more information on the
matter. The mean of the derived foot-lengths in column 4 of Table 1 is 0.322 m,
but it gives no indication of the probable range of the standard used. For this we
need to turn to computer-intensive statistics since archaeological material seldom
meets the two main assumptions for using classical confidence intervals for small
samples: the original ‘population’ of determined lengths should be normally dis-
tributed and the analysis based on a random sample (see e.g. Shennan 1997,
79–83). Using the calculated foot-units in Table 1, the 95% bootstrap confidence
interval for the Erechtheion-foot mean length cannot be determined more pre-
cisely than as 0.316–0.327 m16. The ‘standard’ length of 0.326–0.328 m for the
‘Doric-Pheidonic’ foot, originally defined largely on the basis of few dimensions

13 IG II2.1668 and the discovery of the remains of Philon’s Arsenal in the Piraeus are equal-
ly important for the fourth-century, though determining the length of the foot-unit used is not
entirely without controversy; for the physical remains, see Steinhauer 1994, 1996; for a dis-
cussion of the problems in identifying the range of the unit, see Rottländer 1997; Pakkanen
2002, 502–503, 505, table 4.

14 G. Ferrari has recently resurrected Dörpfeld’s theory that the Old Temple of Athena was
not completely pulled down after the Persian sack of the Acropolis, but was still standing when
Pausanias visited the Acropolis; Dörpfeld 1887a; 1887b; 1890a; 1897; Ferrari 2002. A reinter-
pretation of IG I3.474 is at the heart of her argument, but comparison of inscriptional and archae-
ological evidence clearly shows that the inscription is solely related to completing the construc-
tion of the Erechtheion, not the Dörpfeld temple; see Pakkanen 2006 (for a recent article accept-
ing the conclusions presented in this paper, see Gerding 2006, 390; Linders 2007, 781).

15 A detailed analysis of the relationship between the inscription and the Erechtheion block
measurements is presented in Pakkanen 2006.

16 A 95% confidence interval for the unit length means that the Erechtheion foot-unit is
with 95% probability within the defined range. Various bootstrap methods produce slightly
differing results for the confidence interval: based on 5000 bootstrap samples the percentile
method gives a range of 0.3164–0.3274 m, the bias-corrected and accelerated method (BCa)
0.3163–0.3273 m, and bootstrap-t (studentised) method 0.3143–0.3273 m. As expected, the
overall agreement of the bootstrap methods with the classical interval of 0.3165–0.3279 m is
good. The bootstrap programs used in the analysis have been implemented on top of the sta-
tistical software Survo MM; Reijo Sund has programmed the module producing the percentile
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in Attic buildings, is at the very end of this range (Dörpfeld 1890b, 171; Dinsmoor
1961, 358). Evidently a more thorough study is in place.

The best place to start is to take the block dimensions listed in column 3 of Table
1 and subject them to independent statistical analysis: this means that the infor-
mation given in IG I3.474 is solely used to select the analysed blocks and the data
on their size in feet are disregarded at this stage. This gives a set of measurements
which should have an underlying basic dimension, a foot-standard in this case,

and BCa intervals and the author of this paper the bootstrap-t module. On the use of bootstrap
methods in architectural contexts, see Pakkanen 1998, 53–55; 2004b, 102–103; Pfaff 2003, 84.
For a recent overview of the archaeological use of bootstrap, including an evaluation of the
Tegea column analysis presented in Pakkanen 1998, 53–54, see Baxter 2003, 148–153. On
bootstrap methods in general, see Davison/Hinkley 1997; Manly 1997, 34–68.
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1. Block 2. IG I
3
.474

(feet)

3.  Measured 

dimension 

(m)

4.   Length of 

foot unit

(m)

4 wall blocks:           L (lines 10–11) 4 1.30 0.325

W (line 11) 2 0.652 0.326

H (lines 11–12) 1
1
/2 0.490 0.327

5 epikranitis blocks: L (lines 16–17) 4 1.301 0.325

H (lines 17–18) 1
1
/2 0.492 0.328

Corner epikranitis:   W (line 20) 4 1.242 0.311

H (lines 20–21) 1
1
/2 0.492 0.328

8 architrave blocks:  L (lines 33–4, 

37–8)

8 2.608 0.326

W (lines 34–5, 

38–9)

2
1
/4 0.77 0.342

H (lines 35, 39) 2 0.63 0.315

3 Karyatid Porch roof blocks: 

L (lines 87–8)

13 4.200 0.323

W (lines 88–9) 5 1.648 0.330

East frieze block: L (lines 115–19) 6 & 8 1.940 & 2.675 0.323, 0.334

W (lines 115–27) 1 0.285, 0.315 0.285, 0.315

H 2 0.617 0.309

North frieze block:   W (lines 115–27) 1 0.298 0.298

H 2 0.683 0.342

Geison block:           L (lines 128–55) 4 1.301 0.325

W 3 0.998 0.333

!x 0.322

Table 1. Comparison of building block dimensions in IG I3.474 and the
Erechtheion (for sources of the dimensions in column 3, see Pakkanen
2006, table 1).



which produces the observable lengths. In statistical terms this dimension is
called a quantum; in the case of the Erechtheion the ‘quantum hypothesis’ is that
a block dimension X can be expressed as the product of an integral multiple M
times the quantum q plus an error component ε. In mathematical terms this can
be denoted as

(1)

The critical factor in the formula is error ε: it sets a lower limit for quantum q. In
any case ε or q–ε should be substantially smaller than any considered q17.
Variation of ±0.01 m between similar smaller architectural elements is quite typ-
ical of Greek building practice18, but by computer simulations it can be demon-
strated that an error of this size has no effect on detecting a quantum in the region
of ca. 0.08 m, or one quarter of a ‘Doric’ foot, even when the number of analysed
building dimensions is small (Pakkanen 2002, 502–503). In order to give due
consideration to units slightly smaller than a ‘normal’ quarter-foot or palm, I will
use a range of 0.06–0.40 m in the following analyses. The upper end is chosen so
that it is clearly greater than any suggested Greek foot-standard19.

In order to determine how well a block measurement X can be expressed in terms
of quantum q, X needs to be divided by q and the remainder ε analysed. The value
of ε will be between 0 and q, and the less it deviates from either 0 or q, the better
the fit between X and q. In Kendall’s cosine quantogram analysis ε is first divid-
ed by q and then the cosine of the quotient is taken: this gives a value of +1 for
dimensions X which are an exact multiple of q, and the worst fitting measure-
ments produce a value of –1. To find out which q is the best candidate for the
quantum, it is necessary to compute the cosine value for all the measurements X
and the full quantum range. How well the tested q values fit the data can be deter-
mined from the cosine quantogram where the sum of the cosine values is plotted
against q: the highest observable peak in the graph is the most likely quantum
candidate (see Figs. 1 and 4). All this can be expressed as the following mathe-
matical formula for the quantum score:

(2)

17 Since ε as a value between 0 and q, q – ε can also produce an error significantly smaller
than q.

18 Coulton 1975, 94. From a statistical point of view it does not matter whether the observed
variation is due to factors in Greek building design and execution, the current condition of the
blocks or modern measurement errors.

19 The ‘Samian’ foot of ca. 0.35 m; for references to the foot, see Wilson Jones 2000, 75 n.
16. There is no need to consider longer units such as cubits in this case since based on IG I3.474
it is known that a foot-standard rather than anything substantially longer was employed in the
building construction.
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Here N is the number of measurements and the first term a scaling factor:
in order to avoid getting a higher value for φ(q) by simply introducing more
measurements, the cosine sum needs to be scaled down (Kendall 1974, 235–239).

Fig. 1 presents the cosine quantogram of the measurement data in column 3 of
Table 1. There are two apparent peaks, the first at 0.162 m and the second almost
exactly twice the first at 0.325 m; the first corresponds obviously to the half-foot
of the unit employed and the second to the full foot. Since the statistical analysis
makes no a priori assumption about the quantum size, or even its existence, it is
highly significant that the cosine quantogram method points towards a slightly
shorter unit than the current consensus on the length of the ‘Doric’ foot. The quan-
tum score of the first peak is 3.70 and the second significantly less, 3.28. The next
task is to find out whether the peaks are sufficiently high to be considered real
quanta and not just background noise; if they are, then it would be convenient to
know how precisely the length of the unit can be defined on the basis of the build-
ing block measurements.

The best means of evaluating whether the highest quantum score produced in the
initial analysis is statistically significant is to build mathematical models of the
data and use them to produce random non-quantal simulation data sets. These
should have the same statistical properties as the original set of measurements,
but lack the quantal properties. The replica data sets are then analysed in the same
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Fig. 1. Cosine quantogram of the Erechtheion building block measurements listed
in Table 1.
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way as the primary data, and if the simulated function peaks are systematically
lower than in the initial analysis, it is possible to accept the quantum hypothesis:
the highest original peak can in that case be regarded as a valid candidate for the
quantum20 and directly related to the foot-standard used in the Erechtheion. Due
to the random nature of the computer simulations, the method for testing the
validity of the results is often called Monte Carlo analysis.

Using kernel density estimation (KDE) distributions is an effective way of pro-
ducing the non-quantal data sets needed in the simulations21. The idea behind the
KDE is that a small continuous distribution is placed at the position of each obser-
vation and these are then added together to create a smooth curve (Fig. 2). The
shape of an individual ‘bump’ can be seen at the right of the figure (solid line).
Employing KDE to produce distribution models emphasises the notion that the
existing measurements are the most reliable guide to what the general character-

20 Kendall 1974, 241–249; Fieller 1993, 282–283; Pakkanen 2002, 501–502; 2004a,
263–270; Baxter 2003, 231–233.

21 On KDE distributions used as mathematical models to produce non-quantal data sets, see
Pakkanen 2002, 501–502; 2004a, 268–270; on KDE in general, see Silverman 1986, 7–74; on
archaeological analysis and KDE, see Baxter/Beardah 1996; Beardah/Baxter 1999; Baxter
2003, 29–37. Histograms are commonly used as input distributions in computer simulations
(see e.g. Law/Kelton 2000, 335–337), but the stepped structure may produce inadvertent quan-
tal qualities in the simulated data sets (Pakkanen 2004a, 267). The computer modules used in
the cosine quantogram analysis, Monte Carlo simulations, and producing the KDE distributions
have been programmed by the author of this paper on top of Survo MM. Cosine quantogram
analysis is now a standard feature of Survo MM (this module has been implemented by Seppo
Mustonen).

106

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Length (m)

0

0.2

0.4

0.6

0.8

1.0

density

h = 0.2

h

h

= 0.3

 = 0.4

Fig. 2. Kernel density estimation distributions used to produce simulation data
sets. The curves are based on the Erechtheion building block measure-
ments listed in Table 1.



istics of the non-quantal data sets should be22. In order to avoid producing the
quantal properties of the original data, it is necessary to smooth the KDE curve,
and this can be done by manipulating the window- or band-width h which corre-
sponds to the class-width in histograms23: when h is small, the data structure of
the original dimensions can be observed more in detail, and when large, the KDE
distribution is very smooth (Fig. 2).

Since the effect of the input distributions on Monte Carlo simulation and cosine
quantogram analysis has been questioned by P. R. Freeman24, several different
KDE distributions with slightly varying band-widths will be used in the follow-
ing. One thousand simulations are usually regarded sufficient for a statistical test
at the 5% level of significance, but I have run three sets of 1,000 simulations for
each data model to examine the variation between different Monte Carlo runs25.
The range for the window-widths used in the Erechtheion inscription dimension
simulations is 0.2–0.4 (Fig. 2) and the ‘objective’ values for h vary between
0.24–0.4026.

The results of the Monte Carlo simulations using the different KDE data models
are presented in Table 2: no differences can be observed between the simulations
using the various band-widths to produce the replica data sets; also, discrepancies
between the different simulation runs are rather small. All runs have recognised
the higher quantum peak of 3.70 at 0.162 m as significant at the 5% level and
rejected the second peak at 0.325 m. The results of the different simulations can
be combined to obtain more accurate values based on 9,000 runs (line j in Table
2): the score for 5% significance level can be determined as 3.41 (the dotted line
in Fig. 1), and the Erechtheion peak height at the half-foot mark of 0.162 m is
topped in only 1.5% of the simulations.

It is highly important that the cosine quantogram analysis recognises a quantum
of 0.162 m in the block dimensions and therefore gives strong support for the

22 The parallel with bootstrap-techniques is evident (cf. Manly 1997, 34), though boot-
strapping itself cannot be used to produce replica data sets: since bootstrap is based on the pos-
sibility of an observation being replicated in the resampled data set, the method produces
emphasised quantum peaks which is exactly the opposite than what the properties of a simula-
tion data set should be; Pakkanen 2002, 502; 2004a, 264–266.

23 The optimal width of h in the KDEs can be calculated in several different ways. I have
used C. C. Beardah’s MATLAB routines to calculate the optimal window-widths of the KDEs;
see Baxter/Beardah 1996, 405–408.

24 Freeman 1976, 23. Freeman’s Bayesian posterior distributions can be shown to be very
closely related to Kendall’s cosine quantogram method; see Silverman 1976, 44–45.

25 On the number of random data sets, see e.g. Manly 1997, 80–84.
26 The band-width h calculated using Solve-The-Equation method (STE) is 0.236, one-,

two- and three-stage Direct-Plug-In (DPI) methods 0.345, 0.305 and 0.269 respectively,
Smooth-Cross-Validation (SCV) 0.305, and Normal method 0.396. For the methods, see
Baxter/Beardah 1996, 397–408.

107



existence of a foot-standard of 0.324 m in the Erechtheion. Comparison of the
inscription data and the simulation results also confirms that cosine quantogram
analysis is a valid way of conducting metrological research: since the inscription
was only used to select the blocks subjected to statistical analysis, the results of
the initial interpretation of the inscription dimensions (column 4 in Table 1) and
the quantogram method are independent from each other. In other words, statisti-
cal analysis of the block dimensions would have detected the quantum at 0.162 m
as significant at the 5% level even without the information of the block dimen-
sions given in the inscription.

Based on comparison of the inscription and the actual block measurements, the
95% bootstrap confidence interval for the foot-standard length was established
above as 0.316–0.327 m. It remains to be seen whether cosine quantogram analy-
sis could be used to determine a more precise range than this. Kendall suggests
that the precision with which the size of the quantum is known can be calculated
as follows: a mathematical model of the data is first used to create a random sam-
ple of dimensions X and quantal properties are introduced to these values by first
calculating the nearest integer L to X/q and then replacing each X by

(3)

where σ is standard deviation and e a standardised Gaussian random variable: Lq
can be defined as a quantal target length disturbed by the error σe. Kendall also
showed that the expectation value for the standard deviation σ can be determined as

(4)
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1. KDE Distribution 2. f(q) , a = 5% 3. a, f(q) = 3.70

a. h = 0.2, 1st run 3.44 1.4%

b. 2nd run 3.36 1.7%

c. 3rd run 3.38 1.2%

d. h = 0.3, 1st run 3.43 2.1%

e. 2nd run 3.45 1.9%

f. 3rd run 3.41 1.1%

g. h = 0.4, 1st run 3.43 1.4%

h. 2nd run 3.39 1.6%

i. 3rd run 3.38 1.5%

j. Combined results of a–i, n = 9,000 3.41 1.5%

Table 2. Results of the Monte Carlo simulations (n = 1,000 for each run). The
KDE distributions used as simulation data models are based on Table 1,
column 3.



where S is the maximum quantum score; the only restriction is that the number of
measurements N should be large (Kendall 1974, 253–254, 258–260). For the
Erechtheion block measurements q is 0.1619 m and S 3.70, so σ can be calculat-
ed as 0.0273 m. Since N = 21 and cannot be classified as large, it is necessary to
compare the values of sample standard deviation s for error ε in formula (1) and
σ: s can be calculated as 0.0282 m, which is almost identical with σ. Therefore,
the expectation value σ can be used in the simulations.

The new X values were produced using a KDE distribution with h = 0.3. Two hun-
dred new sets of simulated X’-values were created and analysed using cosine
quantogram method: the maximum peaks had a range of 0.1604–0.1640 m and
standard deviation of 0.0009 m; the 95% confidence interval for the mean can be
calculated as 0.3237–0.3244 m. Therefore, based on cosine quantogram analysis
of the block dimensions named in IG I3.474, the best estimate for the Erechtheion
foot-unit can be defined with 95% probability as 324.0 ± 0.4 mm. This is approx-
imately 15 times more precise than the initial comparison of block measurements
and inscription data would have indicated, so the benefits of employing the
method are quite apparent.

Analysis of the Erechtheion plan dimensions
To test whether the foot-unit defined on the basis of blocks listed in IG I3.474
could also be linked with the general execution of the Erechtheion, it is necessary
to study a larger set of building dimensions. In order to avoid selecting only meas-
urements which fit a predetermined pattern, I have chosen to use all dimensions
between 0.28–6.00 m given in Stevens’ state plan of the Erechtheion (Stevens et
al. 1927, pl. 2.). The lower limit is selected so as to comprise dimensions close to
the one foot mark of any plausible Greek measurement-standard; including
dimensions longer than 6 m could slightly distort the analysis of the lower range
of the tested quantum lengths: the fit of very long dimensions to small quanta can
be quite arbitrary, so I have excluded the principal width and length measure-
ments from the analysis. This does not mean that the main building dimensions
could not be expressed in terms of the foot-unit in studies of architectural design,
only that the statistical analysis can benefit from their omission.

The 52 Erechtheion plan dimensions within the above defined range are listed in
Table 3. The studied range for q is 0.06–0.40 m, the same as in the inscription data
analysis above, and the cosine quantogram plot based on the measurements in
Table 3 is presented as Fig. 3. There is a single clear peak at 0.1623 m with a score
of 3.532. The results of the Monte Carlo computer simulations based on a large
range of different non-quantal KDE distributions are collected in Table 4. No sys-
tematic changes can be seen between the runs with varying window-widths used
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1. Element 2. Measured 

dimension 

(m)

3. Dimension 

in terms of 

foot-unit of 

0.324 m

4. Discr.

Axial column spacing, E facade 2.114 6
1
/2’ 0.008

Distance from stylobate edge to column 

centre, E facade

0.532 1’10” 0.006

Step width, NE & SE corners of E 

facade

0.350 1’1’ 0.006

Step depth, E facade 0.321 1’ –0.003

Wall block width, E wall 0.638 2’ –0.010

Wall block width, S & N wall 0.692 2’2” 0.003

Distance of anta face to column centre, 

E facade

1.825 5’10” 0.002

Anta side projection length, E facade 0.333 1’ 0.009

Corner block width, E facade 1.630 5’ 0.010

Stylobate block depth, E facade 1.320 4’1” 0.004

Second step block width, E facade 2.074 6’6” 0.008

Second step corner block length, E 

facade

3.590 11’1” 0.006

Second step block length, E facade 1.300 4’ 0.004

First step corner block length, E facade 1.334 4’2” –0.002

First step, length of block next to corner 

block, E facade

1.624 5’ 0.004

Projection of the Karyatid Porch 3.561 11’ –0.003

Width of E opening, Karyatid Porch 1.109 3’7” –0.005

Width of N opening, Karyatid Porch 1.264 3’14” 0.008

Wall width, Karyatid Porch 0.485 1
1
/2’ –0.001

Width of the Karyatid Porch 5.576 17’3” 0.007

Length of NW wall, Karyatid Porch 1.203 3’11” 0.008

Distance from edge of steps to wall, 

Karyatid Porch 

0.929 2’14” –0.002

Length of W wall (S stretch) 3.328 10
1
/4’ 0.007

Door width, W facade 1.344 4’2” 0.008

Length of W wall (N stretch) 5.165 15’15” 0.001

Block width, W facade 0.675 2’1” 0.007

Krepis block length, W facade  1.276 3’15” 0.000

Projection of N Porch towards W 3.714 11’7” 0.008

Recess width, SW wall of N porch 0.615 1’14” 0.007

Anta width, SW wall of N porch 0.341 1’1” –0.003

Distance between anta face and 

column centre, N porch

2.708 8’6” –0.006

Axial column spacing, sides of N porch 3.067 9’7” 0.009

Distance from stylobate edge to column 

centre, N porch

0.683 2’2” –0.005

Step width, N porch 0.328 1’ 0.004

Axial column spacing, corner of N 

porch 

3.149 9
3
/4’ –0.010

Axial column spacing, centre of N 

porch 

3.097 9’9” –0.001
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p

Length of N wall (W stretch) 1.130 3
1
/2’ –0.004

Anta width, N porch 0.799 2’7” 0.009

Anta projection, N porch 0.366 1’2” 0.002

Width of opening, N porch 1.318 4’1” 0.002

Jamb width, N porch 0.513 1’9” 0.007

Door width, N porch 2.427 7
1
/2’ –0.003

Length of N wall (stretch at the SE 

corner of N porch) 

2.547 7’14” –0.005

Stylobate block depth, N porch 1.380 4
1
/4’ 0.003

Pavement block length, N porch 1.318 4’1” 0.002

Pavement block width 1, N porch 1.001 3’1” 0.009

Pavement block width 2, N porch 0.967 3’ –0.005

Pavement block width 3, N porch 1.154 3’9” –0.000

Pavement block width 4, N porch 0.918 2’13” 0.007

First step block length, N porch 1.547 4
3
/4’ 0.008

First step corner block length, N porch 1.373 4
1
/4’ –0.004

Second step block length, N wall 1.300 4’ 0.004

Table 3. Erechtheion plan dimensions (based on Stevens et al. 1927, pl. 2).

Fig. 3. Cosine quantogram of the Erechtheion plan measurements listed in Table 3.



to produce the simulation data sets27: different runs of 1,000 repetitions produced
a range of 3.46–3.61 for the 5% significance level, and the highest quantum score
falls within this range. The combined results of the 18,000 simulations place the
5% level of significance at 3.545, so the peak falls short of being statistically sig-
nificant only by a tiny fraction. When the maximum peak and significance level
are this close to each other, it is necessary to run more simulations than usual:
3,000 would have been a sufficient amount to determine the level precisely
enough, and importantly all different distributions produce the same result.

The plan dimensions can also be used to highlight the role of data selection in the
analysis (cf. Fieller 1993, 286). All measurements which Stevens considered sig-
nificant enough to report in his plan and fell within the defined range of 0.28–6.00
m were included, and omitting even a single badly fitting dimension would have
notably changed the height of the calculated quantum score. For example, the sty-
lobate block of the north porch has a depth of 1.380 m, or 41/4 feet of 0.324 m
(4.25 × 0.324 m = 1.377 m); since the detected quantum is equivalent to a half-

27 The calculated band-widths h are as follows: STE 0.302, DPI-1 0.390, DPI-2 0.341,
DPI-3 0.315, SCV 0.342, and Normal 0.504.
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1. KDE Distribution 2. !(q) , " = 5% 

a. h = 0.1, 1st run 3.54

b. 2nd run 3.59

c. 3rd run 3.48

d. h = 0.2, 1st run 3.46

e. 2nd run 3.59

f. 3rd run 3.56

g. h = 0.3, 1st run 3.54

h. 2nd run 3.57

i. 3rd run 3.55

j. h = 0.4, 1st run 3.52

k. 2nd run 3.53

l. 3rd run 3.55

m. h = 0.5, 1st run 3.60

n. 2nd run 3.52

o. 3rd run 3.54

p. h = 0.6, 1st run 3.53

q. 2nd run 3.61

r. 3rd run 3.51

s. Combined results of a–r, n = 18,000 3.545

Table 4. Results of the Monte Carlo simulations (n = 1,000 for each separate
run). The KDE distributions used as simulation data models are based
on Table 3, column 2.



foot, all dimensions which can accurately be expressed in terms of quarter-feet
result in the worst possible ‘error’ ε in formula (1) and produce a notable nega-
tive impact on the quantum score: if this one measurement is excluded from the
analysis, the height of the maximum peak jumps to 3.76 which would have been
instantly recognised as statistically highly significant.

Before proceeding to a study of the plan dimensions expressed in terms of the
newly defined foot-standard, it is necessary to investigate how Greek foot-units
are typically, and inappropriately, used in architectural studies. Standard metro-
logical analyses which start by taking a set of building dimensions and express-
ing them in terms of possible measurement units do not in my view advance our
understanding of Greek architectural design, and the reason is quite simple:
almost any metric dimension can be expressed sufficiently well in terms of at
least one of the proposed units and its subdivision into dactyls or finger-breaths.
The unit selection and measurement ranges presented in Fig. 4 are based on a
recently published representative article (Wilson Jones 2001), and it shows the
relationship between the different foot-unit ranges and the ‘grey’ areas between
these units: on the left of the figure below 500 mm there are still short stretches
which cannot be expressed in terms of the foot-units and their related dactyls, but
the awkward areas rapidly disappear towards the right. The enlarged area displays
the situation around the one meter mark: there is only one very insignificant grey
zone, and even just the ‘Attic’ and ‘Doric’ feet cover nearly the complete spec-
trum. Stretching the size and number of possibly used foot units and introducing
units as small as half-dactyls render most metrological analyses empty exercises.

Even though the results of the analysis of the Erechtheion plan dimensions fall a
little short of being statistically valid, it is very encouraging that the most likely
quantum detected in the plan analysis is the same as the one based on the inscrip-
tion blocks. Therefore, it is at this point justifiable to proceed to scrutinise how
well the plan measurements of the Erechtheion can be expressed in terms of the
defined foot-unit: this must, however, follow a quantitative analysis of the dimen-
sions in question.

Only 14 of the 52 dimensions, or a little more than a quarter, are expressible in
terms of a multiple of the determined quantum of 0.162 m (marked with bold
typeface in column 3 of Table 3). The concentration of measurements around the
half- and full-foot marks is still sufficient to produce an almost statistically sig-
nificant maximum peak. The dactyl part of the dimension expressed in terms of
the foot-unit of 0.324 m can be used to illustrate the degree of clustering around
the quantum. Fig. 5 presents a histogram of the dactyl values in column 3 of Table
3: there is visible grouping especially around zero and also eight dactyls, though
less in the latter case. The histogram illustrates well the general robustness of the
cosine quantogram method: despite the spread of the dactyl values across the full
range, an appropriate quantitative method can deal with the significant amount of
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Fig. 4. Relationship of ‘standard’ Greek foot-units and the ‘grey’ areas between
dimensions expressed in terms of these units.



noise produced by the Greek design and construction practices as long as there is
some tendency to use discreet steps in the sizes of the building elements. In this
case the mean of the errors ε in formula (1) can be calculated as 29 mm; there-
fore, it can be estimated that with a sufficient number of measurements and the
length of the detected quantum in the region of half a foot, cosine quantogram
analysis can cope with discrepancies of at least in the region of ±25 mm, so
greater than plus or minus one dactyl. The traditional approach to Greek metrol-
ogy relies on the errors being fractions of a dactyl, so the results produced by
these analyses cannot be considered reliable.

At this point it is necessary to turn back to Bankel’s metrological scale analysis
of the Erechtheion-foot. In light of the plan analysis presented above it is clear
that Bankel’s method cannot succeed in determining the foot-unit correctly: the
executed dimensions fluctuate too much for his method to produce a meaningful
result using subdivisions of the foot as small as a dactyl. For example, his sug-
gestion that the stylobate width of the Erechtheion North Porch, 10.717 m
(Dinsmoor 1950, 340; see also Büsing 1985, 159–160), can be defined as 525
dactyls (Bankel 1983, 89–91) is based solely on the predetermined assumption of
the foot-unit length. In terms of the ancient measurement-unit used in the build-
ing, this particular dimension can now be more correctly put forward as 529
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Fig. 5. Histogram of the dactyl values of the dimensions in Table 3, column 3.



dactyls28. Even though Bankel’s data set, only nine measurements, is too small for
reliable statistical analysis29, a cosine quantogram can be used to pinpoint what
the particular shortcomings of the analysis based on metrological scale are in this
case (Fig. 6). The curve is very erratic to the left of 0.1 m, and this due to the small
number of dimensions. The graph starts at 0.02 m, well below the actual detec-
tion limit of 0.06 m for the quantum (solid line in the graph): no significant peak
emerges at the lower end, so Bankel’s suggested unit of 0.32674 m is not sup-
ported by his own data even in the dactyl range30. The highest peak emerges at
0.206 m, and even though several different interpretations of a single value can
always be proposed, none of them have any statistical significance in this case
due to the small data set: for example, 0.2063 m could be 10 dactyls of a foot of
0.330 m, 11 dactyls of 0.300 m or even two thirds of 0.309 m.

Another branch of standard metrology starts with an assumption that the major
dimensions of the buildings should be possible to express in round numbers of

28 10.717 m expressed as feet of 0.324 m is 33’1” (discrepancy 0.5 cm). Bankel’s method
also fails to produce a meaningful result also in the case of two fourth-century temples I have
studied; for Tegea, see Pakkanen 2005, and for Stratos, Pakkanen 2004b, 111–119, esp. note 58.

29 For a small sample such as this it is not e.g. sensible to calculate significance levels using
Monte Carlo simulations.

30 0.32674 m / 16 W 0.0204 m, so Bankel’s dactyl length is at the very beginning of the
graph.
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Fig. 6. Cosine quantogram based on Bankel’s dimensions of the Erechtheion
North Porch.



feet. The choice of the dimensions inevitably determines the outcome of these
analyses, and in order to avoid intentionally selecting well or badly fitting meas-
urements, I have taken the principal building dimensions of the Erechtheion as
they are reported by John Travlos (Fig. 7: Travlos 1971, fig. 280). The results of
expressing the measurements in terms of the foot-units in the range 0.324–0.328
m are rather disastrous for the initial hypothesis that round numbers of feet can
be detected in the building plan (Table 5): the unit lengths of 0.325 and 0.328 m
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Fig. 7. Plan of the Erechtheion with principal dimensions (Travlos 1971, fig.
280).
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Table 5.
Principal dimensions of
the Erechtheion plan
expressed in terms of
different lengths of the
foot-unit (based on
Travlos 1927, fig. 280).



produce two ‘hits’31, but in general no significant pattern can be observed. Even
though the inscription demonstrates a tendency to use discrete multiples of half-
feet in the blocks, this does not necessarily translate into exact multiples of the
quantum in the major building dimensions: fifth-century Attic Ionic design is, at
least in the case of the Erechtheion, still a long step away from the transparency
displayed by the Late-Classical and Hellenistic Ionic temples with their strictly
modular design (see e.g. Coulton 1977, 70–71; Wilson Jones 2001, 675–676).

J. J. Coulton’s suggestion that Greek architects probably used successive systems
of proportion (Coulton 1975, 68–73) could well be the reason why it is so diffi-
cult to express the modern measurements in terms of a coherent ancient unit.
Starting from Vitruvius’ definitions for the Doric and Ionic orders, Coulton ele-
gantly demonstrates the differences between modular and proportional systems.
Vitruvius’ Doric has a radial pattern with most of the dimensions derived fairly
directly from the module, while the Ionic is much more linear (Vitr. 4.3.3–10,
3.5.1–15). Following Vitruvius’ rules for the Doric produces a transparent design,
and establishing the relationships between the various parts of the building should
be a quite simple task involving not much more than testing the different possi-
bilities with a calculator. Analyzing a successive system such as Vitruvius’ Ionic
can be a much more difficult exercise. If the dimensions are rounded at each step,
it is possible that the sizes of the elements higher up in the facade bear no precise
proportional relationship to the size of the initial module: the whole design is like-
ly to be far more opaque than the Doric and cannot be considered anymore based
on a ‘real’ modular system.

Conclusions
The Erechtheion block inventory inscription is an invaluable guideline in the
analysis of the length of the foot-standard employed in the construction of the
temple. In this paper it is demonstrated that cosine quantogram method can pro-
vide a robust tool for detecting the unit lying under the measurement data: using
only blocks identified in the inscription, the length of the Erechtheion foot-unit
can be defined with 95% probability as 324.0 ± 0.4 mm; the results of the block
analysis are further supported by a study of 52 plan dimensions of the building.
A change of a few millimetres compared to previous suggestions for the unit
length may not seem that significant, but even in the medium range building
dimensions there is a notable difference: for example, the projection of the
Karyatid Porch of 3.561 m can now be recognised as 11 feet and not 10 feet and
10 dactyls32.

31 0.325 m: width of the east facade and the north porch; 0.328 m: width of the west facade
and internal width.

32 3.561 m / (0.324 m / 16) W 175.9” W 11’; 3.561 m / (0.327 m / 16) W 174.2’ W 10’10”.
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Based on the Erechtheion it can be suggested that using block measurements
rather than principal building dimensions, such as the total width and length of
the structure, will more probably result in the discovery of a statistically valid
architectural foot-standard. Also, provided that a sufficient number of blocks were
executed reasonably precisely in multiples of half-feet, a unit of that magnitude
can be detected even if there are discrepancies of up to ±25 mm in the execution
of the building elements. The three key issues in determining the lengths of foot-
units on the basis of building dimensions are as follows: 1) the use of an appro-
priate analysis method, 2) data selection, and 3) the number of analysed meas-
urements. It is vital that the selection of dimensions can be shown to be system-
atic and that even though small well selected samples can produce a significant
result, such as here by using the inscription as a guide, larger data sets are more
likely to produce statistically valid results.

The conclusions reached in this paper should have a wider impact than just relat-
ed to Athenian fifth-century architecture. Despite the building block dimensions
listed in IG I3.474.8–155, studies on the Erechtheion foot-unit have failed to cor-
rectly identify its length. This illustrates the serious shortcomings of the standard
metrological approach in being able to derive Greek foot-standards from building
dimensions. Since there is little external evidence on the units33, statistical analy-
sis can provide a fresh start. No results of the previous metrological studies should
be taken as granted, and only a thorough re-examination of all available evidence
employing a proper quantitative method can provide a stable ground on which
further analyses of Greek architectural measurement-units can be built. The paper
also highlights the need to turn again away from simplistic metrological calcula-
tions and analyses towards looking building design as a whole and the role of pro-
portional systems. All studies of building measurements should seriously take
into consideration the possibility that the Greek architects used a successive sys-
tem of proportion as their principal design tool, thus producing intriguing build-
ings which easily escape the attempts of modern scholars to fully grasp their basic
design principles.
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