
PYTHAGOREAN HARMONY MATHEMATICS AND
BUILDING TECHNIQUES:

THE SECOND TEMPLE OF HERA (‘POSEIDON’) AT PAESTUM

Ruud de Zwarte

It can be demonstrated that the architect of the second temple of Hera at Paestum
(ca. 460 BC) built in one Pythagorean (3, 4) rectangle, two squares, two con-
centric circles, one golden isosceles triangle, two golden right-angled triangles
and one hexagon by the ratios 2:5, 3:5, 4:5, 5:6, 5:7 and 5:8. Apart from one
horizontal rectangular plane (the ratio 2:5 applies to its sides) that does not cor-
respond factually to set distances, all vertical figures can be measured, but no
figure can be perceived by men as it is all virtual reality. Looking at the front two
opposite ideas come to mind. Were these imperceptible ratios intended as means
of defence to counteract demonic activity or as creation in honour of the gods?
The architect was familiar with the gnomon, that links Indian and Pythagorean
geometry. The utility of methodical shifting of columns out of their ideal aes-
thetic position is illustrated.

Introduction
In archaic and classical Greece, Pythagorean harmony was just adaptation of dif-
ferent things to each other in order to settle planned totality (Naredi-Rainer 1982,
11-15). Herakleitos of Ephesos (about 500 BC), a non-Pythagorean philosopher,
says that things are connected via oppositions, and this produces harmony
(Diels/Kranz 1956, I 152, Herakleitos frg. B 8). Pythagorean ontology first
occurs in Philolaos (about 400 BC). This philosopher assigned the triangle to
male and the square to female deities (Diels/Kranz 1956, I 402, Philolaos frg. A
14). According to Aristotle’s report (Metaphys. A5, 986a 24-25) the Pythagoreans
held that odd numbers are male, even numbers female. Yet what is actually meant
by such statements? Raglan (1949, 111) says: “The attribution of sex to inanimate
objects – stars, rivers, boats, and so on – cannot be the result of observation, even
faulty observation, and can never have served any useful purpose”. One may then
suggest that Raglan’s statement includes geometrical figures and numbers too.
The close connection of philosophy, theology and mathematics is difficult to
grasp, but generally felt to be correct by intuition. Unfortunately, this gives rise to
manifold interpretations resulting in disorder in modern research.
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Perhaps, the problem is not altogether hopeless. Kuznetsova (2005) states that
harmony derives origin from ancient mathematical theories. Temples in South
Italy, the nucleus of Pythagorean activity, are obvious places to look for the evi-
dence. As mathematics is an exact science, it is sufficient to find an example by
which correct judgement can be made. Of course, the criterion is the almost math-
ematical accuracy with which the theoretical size of the figures expressed in spe-
cific units (Attic feet) agree with those actually measured on the temple (cen-
timetres converted into Attic feet). The fixed foot length (32.66 cm) is no matter
for argument as the architect used telling numbers (618 and 1000) in his design
of the golden isosceles triangles: the explanation of the actual measurement in
telling numbers will obviously only work for a specific value of the foot length in
the metric system (1 foot = 16 dactyls, 618 dactyls = 385/8 feet and 1000 dactyls
= 621/2 feet). The result of this study is so arranged that it can easily be read by
non-specialists in the field of Greek architecture.

Towards unravelling Greek temple design
In my paper on the temple of Athena at Paestum I disputed the current opinion
among modern investigators of Greek architecture that the evolution of an aes-
thetically satisfying building was the major preoccupation of the temple architect
(de Zwarte 2006). I presented strong evidence that magic protection of temples
overrules aesthetic matters. This is not to say that the aesthetical appearance was
neglected by the ancient architect, but only that aesthetical matters are secondary
to the screening of the temple from evil spirits. I certainly do not exclude the pos-
sibility that my own explanation of the facts needs to be modified on the strength
of new evidence or by a different interpretation of the existing evidence by schol-
ars with expert knowledge of the written philosophical sources. However, I hold
firmly that the idea of a Greek architect being only at work to realize the best aes-
thetic appearance of a temple can no longer be maintained.
The second temple of Hera at Paestum supplies two new points in support of our
thesis. The first one is immediately clear: A virtual horizontal rectangular plane
without any physical relation to the temple can never be explained as an aesthet-
ic feature. The second one, the relation between the triglyph – an ornament in the
frieze of a Doric temple, repeated at equal intervals – and the column, requires an
explanation.

At this point a brief description of the temple may be convenient (Fig. 1). On the
upper step (stylobate) of the platform stand 6 x 14 columns, the corner columns
twice counted. The columns, included capital and plate (abacus), support the
superstructure. The superstructure is divided into three parts: (1) The supporting
member, carried from column to column (architrave). The projecting fillet (tae-
nia) which crowns the architrave plays, rather unexpected, a part in this study. (2)
The decorative portion (frieze). The architrave (without taenia) and the frieze
share the same dimensions in their horizontal plan. (3) The crowning and pro-
jecting member (horizontal geison). On the fronts the triangular wall (tympanon)
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and the raking geison are still extant on top of the horizontal geison, but not indi-
cated in Fig. 1 as no measurement is available. A publication in monograph form
is still missing, so I could only use the summary description by Krauss (1941) and
the additional information which Mertens (1984) gives in the appendix to his
monograph on the temple of Segesta.

Let us return to the frieze. The constituent parts are identical on all sides of the
temple. The frieze is also regular, which means that the triglyphs are of equal
width (T = 213/16’) with the exception of the corner triglyphs (Tc = 27/8’). The
spaces (metopes) between the triglyphs are equal everywhere (M = 41/16’).
The ideal aesthetical position of the triglyph in relation to the column is centred
over the column axis. In Doric temple design, the corner triglyph is an exception
to this rule. However, the architect of our temple made the axial intercolumnia-
tion at the corners on the front smaller than the other ones (single angle contrac-
tion) and on the flank the same applies to this spacing, but also to the axial inter-
columniation next to it (double angle contraction). Consequently, counted from
the corners of the temple, the ideal aesthetical position of the second column on
front and the second and third column on flank could not be maintained as the
architect preferred regularity in the frieze instead of altering the width of metopes
to compensate the column-shift. Actually, these columns are shifted with regard
to the axis of the triglyph as a consequence of the angle contraction. But what
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Fig. 1. The front of the second temple of Hera (‘Poseidon’) at Paestum.



about the others? Krauss1 took the three remaining axial intercolumniations on the
front and nine on the flank for normal, that is of equal width. Strangely enough,
he also said that more (or all?) columns are shifted. It is here that the absence of
a monograph is most deeply felt. Actually he said that the triglyphs are shifted,
but that is impossible as the shifting of one triglyph causes the shifting of the
whole frieze. Later on he stated that the architect’s design started from the super-
structure to settle conclusively the position of the columns2. I attach importance
to the fact that Krauss did not make an appeal to error in execution. He was ready
to accept that a series of equal axial intercolumniations is compatible with the
shifting of columns.
Krauss was certainly right when he attached much importance to the frieze.
However, it can be proved that the architect started his design from the bottom of
the platform, resulting in a temple in which 3 axial intercolumniations on the front
are of equal width, just as nine on the flank. Consequently, the columns with
triglyphs to match are centred. This design was aesthetically perfect in every
respect and displays already several interesting features. However, the architect
wanted more and was ready to achieve it at the sacrifice of the perfect aesthetical
appearance. In the final design more columns were systematically shifted – the rel-
evant axial intercolumniations vary in width accordingly – and the explanation of
this is the insertion of manifold Pythagorean mathematics in the design of the tem-
ple. In fact, the temple design is subordinated to the virtual mathematical concept.

Virtuality in Greek temple architecture
The existence of virtual numbers and mathematical figures deserves careful atten-
tion as it brings on a radical change in modern thinking on Greek architecture,
mathematics and philosophy. The rapid progress in this field of research in recent
years is the result of the discovery that the Greeks used two foot lengths of stan-
dardized length, the Ionic foot (IF) of 29.86 cm (divided into 16 dactyls) and a
derivative of this foot (171/2 Ionic dactyls), the Attic foot (AF) of 32.66 cm (divid-
ed into 16 dactyls) (de Zwarte 1994 and 2006, Digression).

To my best knowledge, the identification of ‘virtual reality’ is brand-new and the
research is still in its infancy. A virtual number is the result of the system of pro-
portion of the type let x = y – z, in which y and z represent length and width of a
rectangle, expressed in feet and identical fractions of feet. Consequently, x is a

1 Krauss 1976, 50-53. This is the unaltered third edition of the original text printed in
1941, but it includes a foreword by Gruben and an appendix by Mertens in which, however,
information on measurements is lacking.

2 Krauss 1976, 62: “Denn da der Fries, von diesen Verschiebungen abgesehen, den
Grundriss in einfacher Form enthällt, während in der Säulenstellung die Regelmässigkeit mit
der Eckkontraktion aufgegeben werden musste, ist beim Poseidontempel der Entwurf folge-
richtig vom Gebälk ausgegangen.”
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virtual whole number of feet. Up to now x is always a number that can be divid-
ed by 5, but that might be a coincidence as the evidence is still meagre, including
fresh evidence, presented in Table 13.

The dimensions of the rectangles in the Parthenon and the Hera II temple (Fig. 2)
are difficult to assess because they are surrounded by the colonnade. However,
the burnt-offering altar of the Hera I temple is situated in the open. Seen from an
angle, from a distance or close at hand, a visitor – whether with or without knowl-
edge of the architect’s foot-standard – sees nothing more than two sides of the
altar platform, of which the dimensions can be guessed more or less accurately.
Only accurate mensuration followed by mental arithmetic reveals the meaningful
round number of feet which is the difference of length and width, provided that
the foot length is known. Thus such a number is virtual to anyone and a contem-
porary visiting architect who has the number by hearsay, cannot be sure of it just
on basis of assessing the dimensions of the altar by eye.
This altar was built during the lifetime of Pythagoras. Thus it is not really sur-
prising to see that the diagonal is a whole number (Fig. 2). The constructions of
the Pythagoreans are often based on near-triples. Whether the Pythagoreans knew
that the triple (325, 1125, 1171) is incorrect is a matter of opinion. If they obtained
the number 1171 by algebra, they knew it, but if found by geometry, I cannot
judge that as the difference between the theoretical length of the diagonal and the
practical length is less than 1/10th of a millimetre. In the Hera I temple there is
also a virtual square that shows the square root of 2 by the rational approximation
437/309. The construction of the virtual golden isosceles triangle in both temples
of Hera at Paestum is also based on a near-triple (Fig. 3). Surely, the accuracy

3 Athens, Parthenon: de Zwarte 2002, 14-16 and fig. 6, after Mertens 1984 (Parthenon),
66-67; Paestum, Hera I: de Zwarte 2002, 13-14, after Mertens 1993, 3, fig. 2; Paestum, Hera
II, after Krauss 1976, 46, fig. 4.
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Table 1. Rectangles (* = virtual): the difference of length and width is a virtual number

Place Rectangle measured (cm) Interpretation

cm        feet

Athens,

Parthenon,

Cella

Paestum,

Hera I

Paestum,

Hera II

Stylobate

Axial, columns*

Elevation, front*

Elevation, flank*

Outlying altar,

platform

Cella socle

L – W = 3733.3

L – W = 3732.2

W – H = 746.3

L – H = 4478.5

L – W = 1493.0

L – W = 3267.9/

3268.7

3732.5 = 125 IF = 197
3
/4 – 72

3
/4

3732.5 = 125 IF = 191
11

/16 – 66
11

/16

746.5 =   25 IF =   66
11

/16 – 41
11

/16

4479.0 = 150 IF = 191
11

/16 – 41
11

/16

1493.0 =   50 IF =   70
5
/16  – 20

5
/16

3266.0 = 100 AF = 141
5
/16 – 41

5
/16



with which these figures have been set out in the Hera I temple is asthonishing4.
Unfortunately, nothing is known in detail about the measuring instruments used
by the Greeks, for none have survived.

Virtual figures cannot be seen at a glance (see Table 1: *), as the outline does not
coincide with the lines of a single part of the design. For example, the rectangle
forming a triglyph is real, but the axis of the triglyph may be a part of a virtual
figure. The exception to this rule is the straight line. The figure is virtual if the
position of some points is defined by the architect to embody a special meaning.
The only example of this sort is extant on the steps of the Hera I temple at
Paestum (ca. 530 BC). The geometrical progression of Pythagoras – 1, 3, 4, 7, 11,
18, .. – found anew by Lucas (1877), was used in setting out the golden section
with the help of the numbers 521, 843 and 1364. The golden section can be
expressed as the ratio of two successive integers in this progression5. Joints
between the stone blocks give the position of the points concerned. Certainly, this
was not in the least an easy problem to deal with6. Virtual figures are invisible, but

4 Measurement by Mertens 1993; appended drawing 2 (ground-plan, in temple axis):
341.1 + 812.5 = 1153.6 cm (side of square), 1153.6 + 621.3 = 1774.9 cm (perpendicular);
appended drawing 8 (d: inner view): 1153.5 cm (side of square and base of golden triangle);
385/8 IF = 1153.3 cm and 597/16 IF = 1774.8 cm.

5 In fact, the golden section is only accurate if geometrically constructed (see Naredi-
Rainer 1982, 195), but successive high numbers of geometrical progressions give an accu-
rate approximation (Numbers of Fibonacci 89 and 144 give 0.61805.., which is accurate,
unlike 5 and 8 of the same series, which give 0.625).

6 de Zwarte 2002, 11-12. The discovery was the result of a coincidence. In his study on
the Hera I temple at Paestum de Waele (1995, 513-518) suggested that the over-all length of
a series of stone blocks could be significant to Greek architects in designing the tripartite
division of the ground-plan of a temple. Of course, only a modern publication in monograph
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Fig. 2. Temples at Paestum. Rectangles representing the outline of the altar of
the first temple of Hera (length minus width is 50 Ionic feet) and the
cella of the second temple of Hera (length minus width is 100 Attic
feet); measurements between brackets.



they can be measured and in this manner their existence can be revealed. This
applies to virtual figures embedded in the building. However, the second temple
of Hera at Paestum has a novelty, that is a virtual rectangular plane that is not
framed in the construction of the temple. So the problem arises how it can be
traced. This is a question I will explain below.

Hera temple II: floating rectangular plane
Krauss7 says (1941): “… in der vorspringenden Taenia des Architravs gemessen,
also an der Stelle von dessen grösster Ausladung das klare Seitenverhältnis von
1:21/2 …” Unfortunately, he stated only the measurement on the front – 2356 cm;
2356 x 21/2 = 5890 cm – so nobody could check whether the ratio is accurate or
only approximate, which could give reason to dismiss the claim. There are also
objections on systematic grounds (Fig. 1) as Coulton (1975, 62) commented: “It
is most unlikely that the architect of the second temple of Hera at Paestum, build-
ing a highly conventional temple, was the only man to design a temple so that
there was a simple proportion on length to width at the level of the architrave tae-

form (Mertens 1993) – in which every single stone is accurately measured – is suitable to put
the idea to the test. Obviously this is also a job for a computer, but an adequate calculating
program was lacking. So I spent hours at systematic calculation. The results were ambigu-
ous. Surprisingly, I found connected measures on the middle step on north side, starting from
the west edge of the step (1943.5 + 3144.5 = 5088.0 cm) and in identical position on the
south side. Within the context of temple design these figures were meaningless, but playing
with my calculator the architect’s intention became clear. In retrospect I ask myself whether
a computer is really helpful in tracing unexpected things. However, almost certainly I should
also have failed in tracing the golden section if executed only once. On the meaning of the
virtual figures in the first temple of Hera at Paestum see de Zwarte 2005.

7 Krauss 1976, 62-63 (60: 2356 cm measured on front).
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Fig. 3. Temples at Paestum. Telling numbers of the golden isosceles triangle
and its metric equivalent in cm if executed in Ionic feet (Hera I) or Attic
feet (Hera II).



nia.” Coulton concluded that this proportion was simply a matter of coincidence.

In 1984, Mertens gives additional information (see Table 2), and this permits the
calculation of the frieze lengths. As the architrave and frieze lengths are equal, the
length of two times the protruding taenia is about 2356 – 2339 = 17 cm. This
amount added to the frieze/architrave length on the flank gives about 5945 cm, or
55 cm longer than the ratio 1:21/2 predicted. It will be remembered that Krauss
was an outstanding historian of Greek architecture, not a charlatan. As such a dif-
ference is extreme, it is not possible to decide on this by an off-hand judgement,
but only by plausible conjecture how discoveries of that kind must surely have
been made. In fact it is very simple. The ratio in the taenia is a makeshift. The
ratio is absolutely correct, but not positioned in the taenia. Krauss’ only hope was
that his hint would be of service to other investigators who are better equipped
than Krauss himself to make use of it. Indeed, it is not surprising that Krauss
could not cope with virtuality, as this is incompatible with his position that tem-
ple design is a matter of pure aesthetics. This is still the position almost general-
ly held so far by historians of Greek architecture.
Until recently investigators were in the dark concerning Greek standards of length.
Previous work in examining design methods had usually been based on a detailed
study of proportion, which can be done without previous knowledge of the foot-
standard used by the architect. The first step in analysing a Greek temple in this
way is obviously the calculation of the proportion of length to width of the main
parts in the simplest terms. In this manner I tread certainly in Krauss’ steps. The
ratio of length to width of the stylobate, averaging the 4 possible combinations of
the measurement (see Table 2), is 2.465:1; the ratio of the averaged frieze dimen-
sions is 2.534:1; the sum of these ratios is 4.999:2, or almost exactly 5:2. This can-
not be accidental. Following Pythagorean practise, I do not write the ratio as 21/2:1.
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Table 2. The second temple of Hera (‘Poseidon’) at Paestum

First published by Krauss in 1941 (K) or by 

Mertens in 1984 (M)

Measured

(cm)

Interpretation

(1’ = 32.66 cm)

Stylobate length on front (w/e)

Stylobate length on flank (s/n)

Corner triglyph width (Tc)

Triglyph width (T)

Metope width (M)

Frieze length on front = 2Tc+9T+10M

Frieze length on flank = 2Tc+25T+26M

Geison height

Frieze height

Architrave height

Column height

Subtotal height

Platform height

Total height

K46

K46

K50

M217

M217

calc.

calc.

K53

K50

K50

K49

calc.

M215

calc.

2429.6/2431.6

5989.1/5996.0

93.8

91.8

132.5

2338.8

5927.6

81.0

143.3

148.8

888.0

1261.1

133.5

1394.6

2431.1 =   74
7
/16

5997.2 = 183
5
/8

93.9 =     2
7
/8

91.9 =     2
13

/16

132.7 =     4
1
/16

2341.3 =   71
11

/16

5933.9 = 181
11

/16

81.7 =     2
1
/2

142.9 =     4
3
/8

149.0 =     4
9
/16

887.9 =   27
3
/16

1261.5 =   38
5
/8

133.7 =     4
3
/32

1395.2 =   42
23

/32



No doubt Krauss soon realized that his discovery was problematic. It is easy to
find that the sides of this rectangle are calculable from half the sum of stylobate
and frieze dimensions, respectively on the front and on the flank: 1/2(747/16’ +
7111/16’) : 1/2(1835/8’ + 18111/16’) = 731/16’ (2386.2 cm) : 18221/32’ (5965.6 cm) =
2:5. Such a rectangle cannot be inferred from the building’s singular dimensions,
and a virtual rectangle did not fit in with Krauss’ way of thinking on Greek tem-
ple design. As we shall see later on, the dimensions of the plane are fixed this way
for the development of the design. At this stage of our explanation I emphasize
the fact that the position of the plane is of vital importance. As Krauss had no
knowledge of the foot length, he was unable to insert the plane in its correct posi-
tion, even if he had accepted a virtual position. Fig. 3 gives us the clue. Using
telling numbers, the base of the golden isosceles triangle is 618 in number
(dactyls), in feet 385/8’, that is 1261.5 cm if the foot length is 32.66 cm; modern
measurement gives 1261.1 cm (Table 2). This is the distance between the top of
the stylobate and the top of the horizontal geison (Fig.1). As the base of the
isosceles triangle is standing upright, it follows that the position of the ‘perpen-
dicular’ is horizontal in this case. The virtual rectangular plane was so placed that
the ‘perpendicular’ of the golden isosceles triangle and the virtual horizontal
plane coincide. Thus, the horizontal ‘perpendicular’ we expect to find is 951 in
number (dactyls), in feet 597/16’ and converted into the metric system 1941.2 cm.
In fact, however, there are two horizontal ‘perpendiculars’, as the architect
planned these isosceles triangles at both corners of the front.
It is here that a remark on the contents of Table 2 may be useful. The height of
the platform was originally valued by me at 3 x 13/8’ = 41/8’ = 134.7 cm on the
assumption that the steps are of equal height. In this case the resulting total height
is 423/4 feet, which seems more likely in planning the over-all dimension.
However, in the course of further study a measure of 4223/32’ emerged level and
this time certainly irreplaceable by 423/4 feet. It follows, if I am on the right track,
that the architect had a clear picture of a square with side 4223/32 feet in his mind.

This rather long digression was needed, I think, to make clear why our knowledge
of Greek temple design is still defective in spite of age-long research. Besides, it
seems unwise to underrate the intelligence of ancient architects. I fully disagree
with Coulton (1974, 86) when he says about the ancient Greek architect: “Such a
man is unlikely to have been aware of the need for detailed planning or in the pos-
session of the intellectual concepts that would make it possible”. I suggest a new
approach for studying Greek architecture, that is free from such erroneous
axioms. It is not surprising that historians of mathematics tend to neglect books
and articles on Greek architecture as many of these studies indeed are paradoxi-
cal and of little advantage to the study of early Greek mathematics. On the other
hand, it surprises me that the relation between philosophy and mathematics is still
treated in a stepmotherly fashion, as Zhmud (2006, 4) very recently observed that
science is largely ignored by modern scholars studying Pythagoras and early
Pythagoreanism. However, things will take a turn. The undeniable evidence, that
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Pythagorean mathematics was in process of development in the archaic and clas-
sical period, is available, but such an evolution can hardly have been limited to
Paestum. It requires joint efforts of many students to put other cities and temple-
sites on the map.

The front of the Hera temple II
Let us look more closely at the details on the front of the temple (Fig. 4). Because
a monograph on this temple is lacking, I have to work with the minimum of evi-
dence based on modern measurements, but I add to Table 3 (see p. 12) as fully
and clearly as possible the calculations which complete the evidence, needed to
reconstruct the design.
The preliminary plan (Fig. 4a) has single angle contraction and it is aesthetically
perfect as the axis of the columns 2 and 3 is in line with the axis of a triglyph, that
is, as historians of Greek architecture would like to have it. In this case, howev-
er, it does not display the final stage of the plan, our Pythagorean architect must
have had in mind. The plan still misses the final touch (see infra), but, as to math-
ematics, the ancient architect already had achieved an impressive result:

1. Two Pythagorean (3, 4) rectangles situated at the corners. The horizontal short
side is the distance from the edge of the frieze to the axis of the near central
column 3 (2831/32 feet). The long side runs from the top of the stylobate to the
top of the geison (385/8’).

2. Two squares with side 4223/32 feet, also at the corners. The horizontal side is
the distance from the edge of the frieze to the axis of the far central column 3.
The vertical side is the total height already discussed above.

3. An identically equal square in central position. The horizontal side is given by
the distance between the intersections of the diagonals of the (3, 4) rectangles
(1/2 x 2831/32’ + 133/4’ + 1/2 x 2831/32’ = 4223/32’).

4. An identically equal (3, 4) rectangle in central position. The horizontal side is
given by the distance between the intersections of the diagonals of the squares
(1/2 x 4223/32’ + 1/2 x 4223/32’ – 133/4’ = 2831/32’).

We may conclude from this that the position of the central columns 3 is final.
However, the position of the columns 2 is not the ultimate one, as the distance
from the edge of the geison to the axis of the far column 2 is 5915/32 feet, that is
1/32’ (about 1 cm) too long to represent the horizontal ‘perpendicular’ of the gold-
en isosceles triangle. Thus the shifting of these columns is necessary for yielding
an additional mathematical feature doubly (Fig. 4b). There is no doubt that the
architect worked out all the elements of his design by calculation, e.g., GP + Tc +
71/2T + 8M – 1/32’ gives the ‘perpendicular’ the correct length. But what about his
intentions? It cannot be seen at a glance whether the vertex of the triangles has to
be directed towards the interior of the temple or outwards. It is important to notice
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that the way of designing the length of the ‘perpendicular’ fixes the desired posi-
tion of the triangle with regard to the central square. Thus it was not an adequate
execution of the architect’s intentions to uphold columns 2 in ideal aesthetic posi-
tion and to obtain the length of the perpendicular by giving the geison projection
231/32 instead of 3 feet.
One diagonal of the square in Fig. 4a intersects the temple axis at the top of the
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Fig. 4. The front of the Hera II temple at Paestum; 4a: The axis of columns 2 and
3 is in line with the centre of a triglyph while squares and Pythagorean
(3, 4) rectangles are present; 4b: The ‘perpendicular’ (597/16’, in horizon-
tal position) of the golden isosceles triangles comes out from shifting
columns 2 (executed).

b

a



architrave because the sum of frieze height and geison height (see Table 2) is
equal to half the axial intercolumniation 133/4’. It follows that the diagonals of
both squares enclose around the temple axis a square whose diagonal is equal to
the short side of the Pythagorean rectangle (4223/32’ – 2 x 67/8’ = 2831/32’).

The second temple of Hera embodies more mathematical theory. The so-called
triangle of Kepler, the right-angled golden triangle, is also present. Fig. 4a shows
the construction: drop a line from the bottom of the architrave to the stylobate in
such a way that the line goes through the intersection of the diagonals of the
square. Connect the starting-point of the line with the projection of the frieze
edge on the stylobate. The vertical side of the triangle is equal to the column
height 273/16’. The base is half the side of the square, that is 2123/64 feet. The
hypotenuse can be calculated: 34.5743.. feet. The ratio of base to hypotenuse is
0.61778.., which gives a vertical angle of amply 38o9’ (the golden sine 0.6180
represents 38o10’). The decisive factor in the design of Kepler’s triangle is the col-
umn height. It is worth noting that there is an alternative for the exposure of
Kepler’s triangle: drop the relevant line through the intersection of the diagonals
of the Pythagorean (3, 4) rectangle and connect the starting-point with the temple
axis at stylobate level. Obviously, the interpretation of the architect’s intentions is
not as easy as one might wish. In my opinion, however, this alternative cannot be
inserted in the total plan.
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Table 3. The front of the second temple of Hera at Paestum

First published by Krauss in 1941 (K) or by Mertens 

in 1984 (M)

Measured

(cm)

Interpretation

(1’ = 32.66 cm)

Fig. 4a (only columns 1 shifted)

Axial distance (AD)

Stylobate length (SL) w/e

Frieze length (FL) = 2Tc+9T+10M

Tc+1
1
/2T+2M (see Table 2 for these parts)

Geison projection (GP)

Geison length = FL + 2GP

Corner column axis to edge of architrave and 

frieze = 1/2(FL – AD)

Shifting of corner column = 2
1
/8’ –

1
/2Tc

Axial intercolumn., at corner = 15
7
/32’ – 2

1
/8’

Axial intercolumniation, normal = 2T + 2M

Corner column axis to edge of stylobate = 

1/2(SL – AD)

Fig. 4b (final touch: shifting of columns 2)

Axial intercolumniation, at corner

Axial intercolumniation, intermediate

Axial intercolumniation, at centre

M214

K46

calc.

calc.

K53

calc.

calc.

calc.

calc.

calc.

calc.

K46

K46

K46

2203.3

2429.6/2431.6

2338.8

496.5

98.2

2535.2

67.8 

20.9

428.7

448.6

113.2/114.2

430

447

448

2202.5 = 67
7
/16

2431.1 = 74
7
/16

2341.3 = 71
11

/16

497.0 = 15
7
/32

98.0 =   3

2537.3 = 77
11

/16

69.4 =   2
1
/8

22.5 =     
11

/16

427.6 = 13
3
/32

449.1 = 13
3
/4

114.3 =   3
1
/2

428.7 = 13
1
/8

448.1 = 13
23

/32

449.1 = 13
3
/4



The origin of Pythagorean mathematics
Really, this temple is a source of primary importance! The origin and spread of
mathematics is still a mystery as historians of mathematics are unable to derive
all aspects of Greek mathematics from a single origin (Seidenberg 1988, 101-
104). Pythagorean number triples are known of about 1800-1600 BC in
Babylonia (tablet Plimpton 322), of about 1800 BC in Egypt (Rhind mathemati-
cal papyrus) and of uncertain date in India (The Sulva-sutras, a collection of rules
on altar constructions). There is no general agreement on the date of the Sulva-
sutras. The suggested dating of the oldest rules ranges from 800 to 100 BC. As to
number triples a date later than 600 BC is not really a problem as we have two
alternatives for the origin of these triples. In 1962, however, Seidenberg (1962,
509-511) already pointed out that Greek mathematics has an Indian look because
the gnomon was known to the Indians but not to the Babylonians and Egyptians.
It follows that the gnomon might be of Indian origin, irrespective of the precise
date of its invention. The spread of knowledge can be derived from the places
where its practical execution can be established. Thus it is certainly of interest to
observe that the square with side 4223/32’ consists of an L-shaped figure (gnomon)
and a square with side 3527/32’ (half the frieze length). This way of building up
squares by the adjunction of gnomons was known to Philolaos (Heath 1956, vol-
ume I, 351). On the other hand, Thales (about 585 BC) has never been credited
with the gnomon. Thus, in spite of the difficulties in dating the Sulva-sutras on lin-
guistic or literary grounds, a direct borrowing by the Greeks from India in the per-
son of Pythagoras is plausible as the Hera temple II was designed some decades
after his death. Of course, the alternative is the invention of the gnomon by a
Pythagorean mathematician working before 460 BC8. Who borrowed from whom?

The executed front: observations
In the preceding section I have given a detailed description of the development of
the design, all the while pointing to the large number of virtual figures the plan
embodies. I will not present all these figures in a small scale drawing as the result
is a disorderly heap. The reader who wishes to know all the ins and outs is well
advised to make his own drawing on a large scale. The very essential information
I give on a small scale (Fig. 5) suggests more than it really is: the illusion of a com-
prehensive geometrical concept. I resort to calculations to take the illusion away.
Given: AB = 1/2 x 4223/32’ – (21/8’ + 131/8’) = 67/64’, BC = 273/16’ – 1/2 x 385/8’
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8 Seidenbergs explanation (1962, 489) appears too much like special pleading when he
says: “It is true that those who maintained the priority of Indian geometry may have claimed
too much when they said that Greek geometry came from India: what they should have said
was that Indian geometry and Greek geometry derive from a common source”. This is a posi-
tion difficult to defend as it always requires that the Greeks got in touch with the hypotheti-
cal common source of the gnomon between about 550 and 460 BC. Incidentally, Chinese
mathematics (Jiu zhang suanshu or “Nine chapters of the mathematical art”) is equally diffi-
cult to date (suggestions: 1030 BC, 221 BC, 100 AD). The gnomon seems to be used in the
9th chapter (Seidenberg 1988, 108-109).



= 77/8’ and BD = 1/2(4223/32’ – 385/8’) = 23/64’ or half the platform height 43/32’
(see Table 2).
Tangent angle ACB = AB:BC = 0.77579, which belongs to an angle of 37̊48’ and
so differs too much (about 21 minutes) from the vertical angle of Kepler’s trian-
gle calculated above. It follows that the hypotenuse of the golden right-angled tri-
angle does not pass through the vertex A of the golden isosceles triangle.
If one leg of the golden isosceles triangle passes through D, angle BAD has to be
18˚ (see Fig. 3; tangent 18˚ = 309:951 = 0.3249). Instead of this we find tangent
BAD = BD:AB = 0.3350 (about 18˚31’). These results make it unlikely that the
architect’s plan originates from only one single coherent geometrical construc-
tion. I defend the position that the plan is a composition of various figures.

The executed front: interpretation
The axis of the temple is axis of symmetry. The architect started the execution of
his design with a square of which the side is 3527/32 feet, that is in horizontal
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Fig. 5. The front of the second temple of Hera at Paestum as executed. The
golden isosceles triangle has been put in correct position, but calcula-
tions refute the suggestion of a comprehensive geometrical concept.
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Fig. 6. Virtual figures connected by the number 5 on the front of the Hera II
temple at Paestum; 6a: Two diagonals are in harmony with the diago-
nal of the Pythagorean (3, 4) rectangle; 6b: The hypotenuse of the right-
angled golden triangle ADE is in harmony with the diagonal of the (3,
4) rectangle; 6c: Halving the area of the golden isosceles triangle by
line DE; 6d: The areas of the circles are in harmony with the area of the
golden isosceles triangle.

a b

c d



direction half the frieze length and in vertical direction the distance from the bot-
tom of the platform to the upper side of the architrave (Fig. 6a). This side cannot
have any length as the architect aimed at the base of the golden isosceles triangle
expressible as telling number: 3527/32’ – 67/8’ = 2831/32 feet; 2831/32’ x 4/3 = 385/8
feet, that is the telling number 618 (dactyls). The upright base 385/8’ was placed
at right angles to the edge of the horizontal geison and the same value represents
the long side of the Pythagorean (3, 4) rectangle at the edge of the frieze (Fig.
6c). I discuss only the left side of the front, but always indicating the axis of sym-
metry for easy reference.
But let me first explain the architect’s design in a nutshell. The front of the tem-
ple has two corners where identical virtual figures exist, but the Pythagorean har-
monic concept appears around the temple axis applying to only one figure. The
central (3, 4) rectangle (Fig. 6b), the central square with side 4223/32’ (Fig. 6c) and
the small central square with upright diagonal 2831/32’ – whose sides are enclosed
by the diagonals of the squares in the corners (Fig. 6a) – have already been dis-
cussed above. The area of the isosceles triangle emerges in central position by
halving of the area of the golden isosceles triangles in the corners (Fig. 6c).
Therefore I add two circles to the great central square, because the areas (see
infra) are significantly related to the area of the golden isosceles triangle (Fig. 6d).
Finally, the odd man out among the figures is that of the golden right-angled tri-
angle. This triangle (as well as his counterpart on the right) has been enlarged by
lengthening the hypotenuse AC up to the temple axis in E (Fig. 6b).
In talking about the circles I hinted at connections between the constructed
shapes. Indeed, the architect did not simply design a nice arrangement of figures
in one picture.
If my interpretation is right, the ideas the architect worked with seem to have been
based exclusively on ratios. The architect’s idea produced a system with careful-
ly calculated ratios in inner harmony with each other, as they are all related to the
number 5. No wonder that the diagonal 5 of the Pythagorean (3, 4) rectangle is
related to three other straight lines. One of these lines is the diagonal of the great
square. To us the diagonal of a square is √2 times the side, but the Pythagoreans
replaced the square root of 2 by a rational approximation. However, the side
4223/32’, which is 1367 in number (half dactyls), has no integral counterpart for
the diagonal. The necessity of finding a rational expression for √2 arose from this
problem. It follows that we go to suggestions concerning the applied rational
approximation (Table 4).
The very accurate rational approximation 577/408 for √2 is used in the Indian
Sulva-sutras, but expressed differently: the diagonal of a square is 1 + 1/3 +
1/(3x4) – 1/(3x4x34) of a side (Seidenberg 1962, 515). As said above, the archi-
tect of the first temple of Hera at Paestum used 437/309. However, he did not use
it as a makeshift but as the obvious means to carry out his plan, that is the con-
struction of a square of which the diagonal is (to us: practically) rational (437
double dactyls) along with one side also as base of the golden isosceles triangle
expressed as telling number (618 dactyls). Haselberger discovered that 99/70 (in
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dactyls) was used in a drawing at Didyma (ca. 250 BC) (Haselberger 1980, 240
and fig. 1). Again at Didyma we find 123/87, that is 3/3 x 41/29, used in a draw-
ing which depicts the construction of a recessed panel in a ceiling (coffer)9. I dis-
covered the theoretical value of 89/63, but the question is whether the ancients
knew it. According to Wells the Pythagoreans used 7/5, but he gives no reference
to check his statement (Wells 1986, s.n. 1,414). In my opinion, however, 7/5 gives
no acceptable result. The approximation 17/12 is indeed a nice simple one and of
practical use. I take the view that the architect might have adopted 17/12 as we find
these numbers used in halving the area of the golden isosceles triangle (below).

The second line related in harmony to the diagonal 489/32’ (3:5) is of course the
diagonal of the small central square (Fig. 6a) as the latter is as long as the short
side of the (3, 4) rectangle.
The third line is the hypotenuse of the enlarged right-angled golden triangle ADE
(Fig. 6b). DE is unknown, but the triangles ABC and ADE are congruent. So it is
easy to calculate DE from AD/AB x BC, which gives 45.62408.., rounded off
45.625 = 455/8’. DE is the sum of 385/8 and 7 feet. Unfortunately, there is no
measurement available above the horizontal geison. Most probably these 7 feet (=
228.6 cm) represent the height of the tympanon, which is still extant on the east-
side of the temple10. Finally, the theorem of Pythagoras gives the length of the
hypotenuse AE = 58.0208.. feet. The ratio of this hypotenuse to the diagonal
489/32’ is 6.008.. : 5 or almost 6:5.

9 Haselberger 1983, 96. The architect planned a square coffer with side equal to half the
axial intercolumniation 173/4’, but a square with side 87/8’ or 71 double dactyls cannot easi-
ly be constructed as it lacks a diagonal in whole double dactyls. Such a problem is easily
solved by using a suitable larger square adding lines parallel to the sides on the inside at a
distance of a dactyl or a double dactyl. This is exactly what Haselberger found within a
square with side length 325 cm: 324.7 cm = 107/8 feet = 87 double dactyls; the diagonal of
this square is (almost) 123 double dactyls.

10 See photo 42 in Krauss 1976. The height of the tympanon in the temple at Segesta is
231.4 cm (Mertens 1984, 211).
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Table 4. The ratio of the diagonal 48
9
/32’ of the (3, 4) rectangle to the diagonal 

of the square with side 42
23

/32’

Factor Diagonal of the square 

= factor x 42
23

/32’

The ratio is almost 4:5

17/12     = 1.416666r

99/70     = 1.414285..

437/309 = 1.414239..

577/408 = 1.414215..

!2 = 1.414213..

123/87   = 1.413793..

89/63     = 1.412698..

7/5 = 1.4

60.5182..’

60.4165..’

60.4145..’

60.4135..’

60.4134..’

60.3954..’

60.3487..’

59.80625’

48
9
/32:60.5182.. = 3.98898..:5

48
9
/32:60.4165.. = 3.99569..:5

48
9
/32:60.4145.. = 3.99583..:5

48
9
/32:60.4135.. = 3.99589..:5

48
9
/32:60.4134.. = 3.99590..:5

48
9
/32:60.3954.. = 3.99709..:5

48
9
/32:60.3487.. = 4.00018..:5

48
9
/32:59.80625 = 4.03647..:5



More on the golden isosceles triangle
Let us next discuss halving the golden isosceles triangle ABC (Fig. 6c). In a trian-
gle, a line parallel to the base AB divides the other sides proportionally. The same
applies to other lines starting from the vertex C, e.g. the perpendicular. A modern
expression for halving the area states that the ratio has to be 1:√2 + 1 = p1:p2. For
the time being, I follow Wells (1986), and put √2 at 7/5, which gives p1:p2 = 1:2.4
and, indeed, a division of the area into halves according to the architect’s intention.
But I do not believe that the Pythagoreans knew enough algebra to formulate such
a ratio wherein the value of √2 is decisive, but used it without the presence of a
square. As a matter of fact, there is no need for supposing such knowledge as the
question can be solved directly, without reference to the modern expression of the
ratio, because 1:2.4 = 5:12. In words: divide the perpendicular of any triangle into
17 parts and assign 5 parts to the trapezium (ABDE) for halving the triangle11. Such
a formulation can easily be attributed to the Pythagoreans as the ratio is stated in
whole numbers and gives a fair approximation to halving the area. Furthermore, it
follows that the Pythagoreans knew that the area of a trapezium is computed as
half the sum of the parallel sides times the width.
Part p1 of perpendicular 597/16’ can be found in Fig. 5: the sum of the geison pro-
jection (3’) and half the short side of the (3, 4) rectangle 2831/32’ is 1731/64 feet.
The other part p2 is 12/5 p1 = 41.9625, which is close to 41.953125 = 4161/64 feet
or 597/16’ – 1731/64’. Half the area of the golden isosceles triangle ABC is 573.9..
sq. feet. Line DE, a part of the left vertical side of the great central square, divides
the triangle into a trapezium and a triangle; its length is 12/17 AB = 27.26.. feet.
The area of the separate figures deviate less than 0.4% from half the area triangle
ABC. The area of trapezium ABDE is 1/2(AB + DE) x p1 = 576.0.. sq. feet and
the area of triangle CDE is 1/2 DE x p2 = 571.9.. sq. feet. The architect was sat-
isfied with this result as the ratio of area trapezium to area triangle = 1.007..:1 or
almost 1:1. The case of the golden isosceles triangles is decisive proof for con-
sidering the constructions in the corners of the temple as formative. We focus
therefore our attention on the temple axis.

The area of the golden isosceles triangle, 1/2 x 385/8’ x 597/16’ = 1147.8.. sq. feet,
is in harmony with the area of the inscribed and circumscribed circle of the cen-
tral square with side 4223/32 feet (Fig. 6d). To the purpose of calculation I use for
π the Archimedean value 22/712.

11 In Babylonia and Egypt the mathematical importance of a problem lies in its arith-
metical solution. Not surprisingly, the examples given in the texts are so arranged that the
calculation is an easy exercise. A Pythagorean example for halving a triangle might have base
153 and perpendicular 238 as the calculator does not find broken numbers on his way.
Moreover, if the triangle is taken as isosceles the side is (almost) a whole number.

12 The rational approximation 99/70 for √2 is of special interest if Greek mathematicians
working in the Hellenic period knew that √2 and π are about in the ratio of 9:20, as 22/7 x
9/20 = 99/70.
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The area of the inscribed circle is 1/4 x 22/7 x D2 = 1433.8.. sq. feet. The ratio of
area triangle to area circle is 4.002.. : 5 or almost 4:5.
The areas of two circles are to each other as the squares on their diameters. The
diameter of the circumscribed circle is 4223/32√2 feet. It follows, that the area of
the circumscribed circle is two times the area of the inscribed circle. So the ratio
of area triangle to area of the former circle is almost 2:5.

One system of harmony
The result so far gives an impression of two separate systems of harmony. In fact,
however, we are dealing with just one, as the systems of line and area are con-
nected. The ratio of the diagonal 489/32’ of the (3, 4) rectangle to the diameter of
the circumscribed circle 4223/32√2’ is 3.9959.. : 5 or almost 4:5. However, I
replace this by saying that the ratio of the diagonal to the radius of the circum-
scribed circle is almost 8:5. I admit, there is no point in doing this unless the still
missing ratio 7:5 turns up (see infra).

Let us now return to the free floating rectangular plane for a discussion of the
length of the side on the front of the temple (Fig. 1). Following Krauss, I accept-
ed its length as equal to half the sum of the frieze and stylobate lengths:
1/2(7111/16’ + 747/16’) = 731/16 feet. As an aside I stated above that the length was
fixed this way to be able to develop the design. Thus our attention now shifts to
the intervening stages of this part of the plan. At first I wondered at its length as
the perpendicular of the golden isosceles triangle exceeds the limit of the floating
plane (Fig. 6c). Gradually it became clear that the architect selected this length as
a compromise to kill two birds with one stone, that is, a plane in the ratio 2:5 and
in the short side of the plane the embodiment of the ratio 7:5. Probably the archi-
tect was a Pythagorean mathematician, who not only used measures with preci-
sion, but did so in a way that was explicitly mathematical. He started off by defin-
ing the width of metope M and normal triglyph T, which, among other things,
resulted into a measure of 523/16 feet (Fig. 1), that is the sum total of 8 M and 7
T, centred around the temple axis and equal to twice the hexagon’s apothem (see
infra). After finishing the frieze (7111/16’), the side of the floating plane was fixed
as 7/5 x 523/16’ = 731/16 feet and finally the stylobate resulted from two times
731/16’ less 7111/16’ = 747/16 feet. It took me a long time before I understood the
order in which the events follow each other, as it cannot be grasped before the
total design is clear.

Let me explain this. The architect was faced with the problem that there is a limit
to everything. He was unable to express the radius of the circumscribed circle of
the square directly in a dimension of the temple. I suggest that the architect
worked on the premise that the status of any measure can be formally acknowl-
edged either by measurement or by a sound line of reasoning. As an example of
the latter I may refer to the argumentation to find the sides of the floating plane.
Thus it is not enough to argue that the area of the circumscribed circle is two times
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13 If regularity of the hexagon is accepted, the distance 8M + 7T = 523/16’ represents the
side of the equilateral triangle. The side is 1/4 % too short as 30.2067.. x √3 = 52.3195.. feet.

the area of the inscribed circle, as we cannot be certain that the architect incorpo-
rated the circumscribed circle in his plan. Up till now it is only known that it can
be done within a mathematical design based on number 5 as its diameter is prop-
erly related to the diagonal of the (3, 4) rectangle by the approximate ratio of 5 to
8. However, instead of circumstantial evidence, explicit evidence is needed before
the circumscribed circle can be accepted with full confidence as part of the plan.

A virtual hexagon
The architect introduced the circumscribed circle ingeniously, adding splendour
to the design. The length of the side of a polygon within a circle is fixed by the
radius of the circle and the apothem. Thus there are three unknowns. The polygon
that offers a way out of the difficulty is the hexagon as the side is equal to the
radius of the circle. Thus it is no surprise that the architect gives the apothem and
points to it by the ratio 7:5. Our observation gives reason of existence to the cir-
cumscribed circle of the square as part of the design.
The construction of the virtual hexagon is cleverly planned and skilfully made
(Fig. 7), but what about its accuracy? A few calculations answer this question.
First the apothem (A) using the identity A2 = R2 – (1/2 R)2. The apothem of a hexa-
gon within a circle with radius 30.2067.. feet is 26.1597.. feet. The architect’s
approximation for the apothem 263/32’ is 1/4 % too short.
Given the apothem 263/32’, the two sides in vertical position work out 30.4343..
feet, that is 3/4 % too long. The other sides are 1/4(outline of hexagon 6R less 2 x
30.4343..’) = 30.0929.. feet, that is 3/8 % too short. This result is accurate enough
to accept the intention of the architect to produce a regular form of an especially
desirable kind, a hexagon13. The result is approximating as it was done by the ratio
of whole numbers, a method which is typical of the Pythagorean mathematicians.
Certainly, the architect possessed no little mathematical knowledge. Historians of
mathematics may decide whether this investigation of the principles of the second
temple of Hera at Paestum enlightens the state of mathematics at his time.

The resulting harmonic composition
The final result of the architect’s design, executed on the front of the temple is a
harmonic composite in central position (Fig. 8) and its constituent parts are all
connected by the number 5. But it is surprising that the built-in geometrical fig-
ures are virtual and so invisible for human beings. In other words, the usual visi-
tors of the temple were not the target group the architect had in mind. It follows,
that the architect aimed his design at superior beings that surpass men in quali-
ties. I surmise that the structure was designed and executed for the benefit of the
Pythagorean community, but was it intended to protect from harm by demons or
to do honour to the gods? I leave it to the reader to answer this question.
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The rest of this paper will be limited to a short discussion of the flank of the tem-
ple, not just with the intention of explaining the development of the long side of
the temple from the front dimensions but also of demonstrating the results which
can be achieved in the field of mathematics if a large series of columns is sys-
tematically shifted out of its ideal aesthetic position. The latter is partly hypo-
thetical but of interest as this phenomenon has also been observed on Sicily,
namely on the great temple of Segesta and the temple of Apollo at Syracuse.
Moreover, the variants I present for the shifting, on basis of Krauss’ concise
description (below), causes one to see the clash between contradictory wishes. It
is shown that advanced mathematics is realized at the cost of aesthetic qualities.
In my opinion, aesthetic qualities recede for the benefit of performing
Pythagorean mathematical concepts.
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Fig. 7. The front of the Hera II temple at Paestum. Approximate construction
of the side of a regular hexagon by the ratio 3617/32’ : 263/32’ = 7:5 (see
Fig. 1 for position of A).



From front to flank design
The preliminary design of the front (Fig. 4a) has 6 columns, single angle con-
traction and 3 normal axial intercolumniations of 133/4 feet. On the flank (Fig. 9)
we find at its preliminary stage 14 columns, double angle contraction and 9 uni-
form axial intercolumniations of 133/4 feet, as shown in the frieze. Geison and
frieze become 110 feet (8 x 133/4’) longer than on the front. To provide for dou-
ble angle contraction the corner column and the column next to this column shift
7/16 feet inwards. So the axial distance becomes 677/16’ + 110’ – 7/8’ = 1769/16 feet
and the axial spacing at the corners is as on front, that is 133/32 feet. The inter-
mediate spacing becomes 133/4’ – 7/16’ = 135/16 feet.

The axial distance, given by Mertens (Table 5), confirms the outline of this pre-
liminary design of the flank as 1769/16’ = 2 x 133/32’ + 2 x 135/16’ + 9 x 133/4’.
Normally the stylobate length should become 747/16’ + 110’ – 7/8’ = 1839/16 feet,
but it may be remembered that the long side of the virtual horizontal plane (5/2 x
731/16’ = 18221/32 feet) has to be half the sum of frieze and stylobate lengths. The
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Fig. 8. The second temple of Hera at Paestum. Virtual harmonic composite at
the axis of the front.



requisite length of the stylobate 1835/8’ was achieved by putting the axis of the
corner columns at a distance of 317/32 feet off the stylobate edge, instead of 31/2
feet as on front. Aesthetically, the preliminary design is excellent as the triglyphs
of 10 columns are centred over the column axis. However, a glance at Table 5
shows that the intermediate axial intercolumniation is correct while the one at the
corner is smaller than predicted. This is an indication that the architect desired
eagerly to seek some mathematical aim at the flank too. Certainly, such a design
requires the shifting of more columns. Krauss only makes in passing a remark on
shifting of the columns on the flank (Krauss 1976, 53). Unfortunately, his remark
is tantalizing in its vagueness, but still one may hope to glean some information
from it of the architect’s intention. So much is clear that many (or all) columns
are shifted and that the direction of shifting is not uniformly inwards or outwards.
That will do to frame several interesting hypotheses.

Setting up on the stylobate a plane in the ratio 2:5 that intersects the horizontal plane
in the same ratio seems a nice idea to realize for an architect occupying himself in
the number 5 (Fig. 9a). The vertical measure 385/8’ is known to us on the front as
long side of the (3, 4) rectangle and as base of the golden isosceles triangle. The
shifting of both columns 4 5/32 feet outwards results into the horizontal side 969/16’.
It is to be expected that the architect did not neglect the aesthetic side of his plan.
Changing only the position of columns 4 would cause a harsh contrast between the
third and fourth axial intercolumniation (third: 133/4’ – 5/32’ = 1319/32’ = 444.0 cm;
fourth: 133/4’ + 5/32’ = 1329/32’ = 454.2 cm). Therefore he strove to obtain a gradual
change. Outside the plane, the first and third axial intercolumniation were modified
(first intercolumniation: 133/32’ – 1/16’ = 131/32’, indicated in table 5 as factually
established; third intercolumniation: 1319/32’ + 1/16’ = 1321/32’ and so compen-
sating for the modification of the first). This is the design shown in Fig. 9a.
Systematic shifting of columns 5, 6 and 7 can be realized in several ways. It all
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Table 5. The flank of the second temple of Hera at Paestum

First published by Krauss in 1941 (K) or by Mertens 

in 1984 (M)

Measured

(cm)

Interpretation

(1’ = 32.66 cm)

Axial distance (AD)

Stylobate length (SL) south/north

Frieze length (FL) = 2Tc+25T+26M

Geison projection (GP)

Geison length = FL + 2GP

Corner column axis to edge of architrave and 

frieze = 1/2(FL – AD)

Shifting of corner column = 2
9
/16’ –

1
/2Tc

Corner column axis to edge of stylobate; 

remark: 1/2(SL on north side – AD) = 114.9

Axial intercolumniation, at corner

Axial intercolumniation, intermediate

Axial intercolumniation, normal (9);

remark: AD – 2(426 + 434.8) = 9 x 449.4 
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Fig. 9. The flank of the Hera II temple at Paestum; 9a: Double angle contrac-
tion after Krauss and central part interpreted by author. Preliminary
design a can be executed in a meaningful way either as b or c; 9b:
Aesthetic solution (central columns 7 not shifted), comparable with the
executed plan of the front; 9c: Advanced mathematical design, in line
with the result on the front.

abc



depends on the complexity of the design. In Fig. 9b the central columns 7 continue
to be centred as on the front and the shifting of columns 5 and 6 is not too obvious.
Fig. 9c depicts a solution that is also in line with the results on the front. This idea
is based on the observation that the axial distance on the flank (1769/16’) is relat-
ed to the axial distance on the front (677/16’) as 2.618..:1. Anyone who is familiar
with geometrical progressions will immediately recognize this ratio as the square
of the golden section 1.618..:1. But let me illustrate its origin with the well-known
series of Fibonacci (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...): 144 divided by 55
gives 2.618…and 89 divided by 55 results into 1.618.., which is an approxima-
tion of the golden section. So the division of the axial distance on the flank
1769/16’ into 677/16’ and 1091/8’ represents the golden section in practical form
like the golden triangles on the front. According to modern standards, however,
the measure of column shifting is less satisfying than in Fig. 9b. However, such a
conclusion has to be of course based on measurement. Nobody is looking at a
frieze situated about 12 m above floor level, separated from the columns includ-
ing abacus by an architrave 11/2 m in height, trying to settle its aesthetic qualities
by assessing the distance in cm between the virtual axis of each column and the
virtual axis of its triglyph. Instead, the onlooker is giving his whole mind to the
general impression of the temple.

Conclusion
The virtual harmonic composite of various geometrical figures related to each
other by the number 5 is convincing evidence that Pythagorean mathematics is
flourishing at Paestum about 460 BC. The purpose of this construction is open to
discussion. The discovery of a virtual horizontal plane that nowhere touches the
building, clears a way for a change in studying Greek temple architecture. I have
tried to illuminate the practical feasibility and flexibility of methodical shifting of
columns. The results on the front can be accepted with full confidence as the
available measurement is not too scanty. The argument outlined above for the last
alternative on the flank, however plausible, cannot be regarded as conclusive.
What is really needed is a full account on actual executed shifting of the columns.
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